A self-consistent spin-diffusion model for micromagnetics

Claas Abert, Michele Ruggeri, Florian Bruckner, Christoph Vogler, Aurelien Manchon, Dirk Praetorius, Dieter Suess

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.
Original languageEnglish (US)
JournalScientific Reports
Volume6
Issue number1
DOIs
StatePublished - Dec 21 2016

Cite this