A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data

Stefano Castruccio, Hernando Ombao, Marc G. Genton

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling spatial dependence of imaging data at different spatial scales is one of the main challenges of contemporary neuroimaging, and it could allow for accurate testing for significance in neural activity. The high dimensionality of this type of data (on the order of hundreds of thousands of voxels) poses serious modeling challenges and considerable computational constraints. For the sake of feasibility, standard models typically reduce dimensionality by modeling covariance among regions of interest (ROIs)—coarser or larger spatial units—rather than among voxels. However, ignoring spatial dependence at different scales could drastically reduce our ability to detect activation patterns in the brain and hence produce misleading results. We introduce a multi-resolution spatio-temporal model and a computationally efficient methodology to estimate cognitive control related activation and whole-brain connectivity. The proposed model allows for testing voxel-specific activation while accounting for non-stationary local spatial dependence within anatomically defined ROIs, as well as regional dependence (between-ROIs). The model is used in a motor-task fMRI study to investigate brain activation and connectivity patterns aimed at identifying associations between these patterns and regaining motor functionality following a stroke.
Original languageEnglish (US)
Pages (from-to)823-833
Number of pages11
JournalBiometrics
Volume74
Issue number3
DOIs
StatePublished - Jan 22 2018

Fingerprint

Dive into the research topics of 'A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data'. Together they form a unique fingerprint.

Cite this