A review of water treatment membrane nanotechnologies

MaryTheresa M. Pendergast, Eric M.V. Hoek

Research output: Contribution to journalArticlepeer-review

1223 Scopus citations

Abstract

Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.
Original languageEnglish (US)
Pages (from-to)1946
JournalEnergy & Environmental Science
Volume4
Issue number6
DOIs
StatePublished - 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'A review of water treatment membrane nanotechnologies'. Together they form a unique fingerprint.

Cite this