A reference genome for common bean and genome-wide analysis of dual domestications

Jeremy Schmutz, Phillip E. McClean, Sujan Mamidi, G. Albert Wu, Steven B. Cannon, Jane Grimwood, Jerry Jenkins, Shengqiang Shu, Qijian Song, Carolina Chavarro, Mirayda Torres-Torres, Valerie Geffroy, Samira Mafi Moghaddam, Dongying Gao, Brian Abernathy, Kerrie Barry, Matthew Blair, Mark A. Brick, Mansi Chovatia, Paul GeptsDavid M. Goodstein, Michael Gonzales, Uffe Hellsten, David L. Hyten, Gaofeng Jia, James D. Kelly, Dave Kudrna, Rian Lee, Manon M.S. Richard, Phillip N. Miklas, Juan M. Osorno, Josiane Rodrigues, Vincent Thareau, Carlos A. Urrea, Mei Wang, Yeisoo Yu, Ming Zhang, Rod A. Wing, Perry B. Cregan, Daniel S. Rokhsar, Scott A. Jackson

Research output: Contribution to journalArticlepeer-review

676 Scopus citations

Abstract

Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.© 2014 Nature America, Inc. All rights reserved.
Original languageEnglish (US)
JournalNature Genetics
Volume46
Issue number7
DOIs
StatePublished - Jan 1 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'A reference genome for common bean and genome-wide analysis of dual domestications'. Together they form a unique fingerprint.

Cite this