A Highly Effective, Stable Oxygen Evolution Catalyst Derived from Transition Metal Selenides and Phosphides

Ranjith Bose, Vasanth Rajendiran Jothi, Dhinesh Velusamy, Paulraj Arunkumar, Sung Chul Yi

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Recently, transition metal chalcogenides and phosphides have been increasingly reported as efficient and stable oxygen evolution reaction (OER) catalysts in alkaline medium, despite the fact that they are thermodynamically unstable under highly oxidative potentials. Here the active forms of these materials are elucidated by synthesizing a hybrid catalyst, which has a metal chalcogenide in the form of CoSe2 and metal phosphide in the form of CoP—CoSe2|CoP. Both CoSe2 and CoP in the as-prepared catalyst are completely transformed into their respective oxyhydroxides and hydroxides, which are, in fact, the true OER-active species in alkaline medium and not the selenide and phosphide themselves. The derived oxides from the hybrid catalyst deliver an excellent OER activity by reaching a current density of 10 mA cm−2 at a low overpotential of 240 mV (vs reversible hydrogen electrode (RHE)) and a Tafel slope of 46.6 mV dec−1. The stability of the derived oxyhydroxide/hydroxide catalyst shows no appreciable deactivation during 120 h of continuous electrolysis, displaying an extraordinary operational stability.
Original languageEnglish (US)
Pages (from-to)1800135
JournalParticle & Particle Systems Characterization
Volume35
Issue number8
DOIs
StatePublished - Jun 19 2018

Fingerprint

Dive into the research topics of 'A Highly Effective, Stable Oxygen Evolution Catalyst Derived from Transition Metal Selenides and Phosphides'. Together they form a unique fingerprint.

Cite this