3D super-virtual refraction interferometry

Kai Lu, Abdullah AlTheyab, Gerard T. Schuster

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.
Original languageEnglish (US)
Pages (from-to)1-46
Number of pages46
JournalGEOPHYSICS
Volume33
DOIs
StatePublished - Aug 5 2014

Fingerprint

Dive into the research topics of '3D super-virtual refraction interferometry'. Together they form a unique fingerprint.

Cite this