3D Crumpled Ultrathin 1T MoS2 for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors.

Yuanlong Shao, Jui-Han Fu, Zhen Cao, Kepeng Song, Ruofan Sun, Yi Wan, Atif Shamim, Luigi Cavallo, Yu Han, Richard B Kaner, Vincent Tung

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Metallic molybdenum disulfide (MoS2), e.g., 1T phase, is touted as a highly promising material for energy storage that already displays a great capacitive performance. However, due to its tendency to aggregate and restack, it remains a formidable challenge to assemble a high-performance electrode without scrambling the intrinsic structure. Here, we report an electrohydrodynamic-assisted fabrication of 3D crumpled MoS2 (c-MoS2) and its formation of an additive-free stable ink for scalable inkjet printing. The 3D c-MoS2 powders exhibited a high concentration of metallic 1T phase and an ultrathin structure. The aggregation-resistant properties of the 3D crumpled particles endow the electrodes with open space for electrolyte ion transport. Importantly, we experimentally discovered and theoretically validated that 3D 1T c-MoS2 enables an extended electrochemical stable working potential range and enhanced capacitive performance in a bivalent magnesium-ion aqueous electrolyte. With reduced graphene oxide (rGO) as the positive electrode material, we inkjet-printed 96 rigid asymmetric micro-supercapacitors (AMSCs) on a 4-in. Si/SiO2 wafer and 100 flexible AMSCs on photo paper. These AMSCs exhibited a wide stable working voltage of 1.75 V and excellent capacitance retention of 96% over 20 000 cycles for a single device. Our work highlights the promise of 3D layered materials as well-dispersed functional materials for large-scale printed flexible energy storage devices.
Original languageEnglish (US)
Pages (from-to)7308-7318
Number of pages11
JournalACS nano
Volume14
Issue number6
DOIs
StatePublished - Jun 2 2020

Fingerprint Dive into the research topics of '3D Crumpled Ultrathin 1T MoS2 for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors.'. Together they form a unique fingerprint.

Cite this