π-Bridge-Independent 2-(Benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Solar Cells

Kai Wang, Yuliar Firdaus, Maxime Babics, Federico Cruciani, Qasim Saleem, Abdulrahman El Labban, Maha A Alamoudi, Tomasz Marszalek, Wojciech Pisula, Frédéric Laquai, Pierre Beaujuge

Research output: Contribution to journalArticlepeer-review

85 Scopus citations

Abstract

Molecular acceptors are promising alternatives to fullerenes (e.g. PC61/71BM) in the fabrication of high-efficiency bulk-heterojunction (BHJ) solar cells. While solution-processed polymer-fullerene BHJ devices have recently met the 10% efficiency threshold, molecular acceptors have yet to prove comparably efficient with polymer donors. At this point in time, it is important to forge a better understanding of the design parameters that directly impact small-molecule (SM) acceptor performance in BHJ solar cells. In this report, we show that 2-(benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile (BM)-terminated SM acceptors can achieve efficiencies as high as 5.3% in BHJ solar cells with the polymer donor PCE10. Through systematic device optimization and characterization studies, we find that the nonfull-erene analogues (FBM, CBM and CDTBM) all perform comparably well, independent of the molecular structure and electronics of the π-bridge that links the two electron-deficient BM end groups. With estimated electron affinities within range of those of common fullerenes (4.0-4.3 eV), and a wider range of ionization potentials (6.2-5.6 eV), the SM acceptors absorb in the visible spectrum and effectively contribute to the BHJ device photocurrent. BM-substituted SM acceptors are promising alterna-tives to fullerenes in solution-processed BHJ solar cells.
Original languageEnglish (US)
Pages (from-to)2200-2208
Number of pages9
JournalChemistry of Materials
Volume28
Issue number7
DOIs
StatePublished - Mar 28 2016

Fingerprint

Dive into the research topics of 'π-Bridge-Independent 2-(Benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Solar Cells'. Together they form a unique fingerprint.

Cite this